

TEA TEMPLATE LANGUAGE

AUGUST 27, 2001

PLEASE SEND ALL COMMENTS TO: OPENSOURCE@DIG.COM

COPYRIGHT  2000 BY WALT DISNEY INTERNET GROUP

mailto:opensource@dig.com

 Tea Template Language

 Page 1

PREFACE

This document introduces the Tea template language to Java developers. It covers all aspects
of Tea, but it is not quite a complete language specification. Because of Tea�s open source
status, a reference implementation is available which is also the standard implementation. The
source code, being freely available, is the most concise specification. A separate architecture
document guides those who wish to peruse the source code.

Tutorials on template writing and writing implementations that use Tea can be based on
information contained within this document. This document will evolve both to clarify
features and to reflect Tea�s evolution. Use of specific products that integrate Tea is outside
the scope of this document.

There are a number of other documents complementary to this reference that cover topics
associated with Tea and Tea-related tools. For additional Tea-related documentation, please
visit http://opensource.go.com.

http://opensource.go.com/

 Tea Template Language

 Page 2

DOCUMENT REVISION

Primary Author(s) Description of Version Date Completed

Brian S O�Neill Initial public release. 07-30-2000

Michael Rathjen Minor update. 08-12-2000

Michael Rathjen Reorganized content. 09-28-2000

Michael Rathjen Minor errors corrected. 12-12-2000

Michael Rathjen Minor errors corrected. 03-01-2001

Michael Rathjen Tea 3.1.5 functions added. 05-18-2001

Michael Rathjen Break statement added. 06-26-2001

Michael Rathjen Looping information updated for Tea 3.2.0. 08-27-2001

 Tea Template Language

 Page 3

CONTENTS

PREFACE ... 1

DOCUMENT REVISION .. 2

CONTENTS... 3

1. INTRODUCTION ... 6

1.1 WHY USE TEA.. 7

2. JAVA INTEGRATION .. 9

3. LEXICAL STRUCTURE ... 12

3.1 KEYWORDS .. 12
3.2 LITERALS.. 13

3.2.1 Null Literal .. 13
3.2.2 Boolean Literals .. 13
3.2.3 String Literals .. 13
3.2.4 Integer Literals .. 13
3.2.5 Floating Point Literals .. 14

3.3 SEPARATORS .. 14
3.4 OPERATORS.. 14

3.4.1 Ellipsis Operator ... 14

4. TEMPLATES... 15

4.1 STATEMENTS .. 17
4.1.1 Semi-colons.. 17
4.1.2 Break Statement ... 18
4.1.3 If Statement .. 18
4.1.4 Looping .. 19
4.1.5 Substitution Statement ... 21
4.1.6 Variable Assignment.. 21
4.1.7 Expression Statement... 22

4.2 EXPRESSIONS ... 23
4.2.1 Accessing Properties ... 23
4.2.2 Arithmetic .. 24
4.2.3 String Concatenation... 25
4.2.4 Relational Tests ... 26
4.2.5 �isa� Operator .. 27
4.2.6 Logical Operators.. 27

 Tea Template Language

 Page 4

4.2.7 Array Creation... 28

5. FUNCTIONS.. 29

5.1 CALLING FUNCTIONS AND TEMPLATES... 29
5.2 FUNCTION LIST... 30

setLocale ... 30
getLocale ... 30
getAvailableLocales .. 30
nullFormat .. 31
getNullFormat ... 31
dateFormat.. 31
getDateFormat .. 31
getAvailableTimeZones... 31
getDateFormatTimeZone .. 31
numberFormat... 31
getNumberFormat ... 32
getNumberFormatInfinity ... 32
getNumberFormatNaN.. 32
currentDate ... 32
startsWith .. 32
endsWith.. 32
find .. 32
findFirst... 32
findLast.. 33
substring.. 33
toLowerCase ... 33
toUpperCase ... 33
trim .. 33
trimLeading... 33
trimTrailing... 33
replace... 34
replaceFirst ... 34
replaceLast.. 34
shortOrdinal.. 34
ordinal ... 34
cardinal ... 34

6. TYPE CONVERSION ... 35

6.1 METHOD BINDING .. 35
6.2 PRIMITIVE TYPES.. 35
6.3 CONVERSION TO STRING .. 36
6.4 VARIABLE PROMOTION .. 36

7. GRAMMAR SUMMARY .. 37

7.1 LL GRAMMAR REFERENCE .. 42

 Tea Template Language

 Page 5

 Tea Template Language

 Page 6

1. INTRODUCTION

Tea is a strongly typed, compiled programming language designed to work within a Java-based
hosting environment. Tea�s main goal is to provide an enforced separation between data
processing and presentation, without sacrificing basic programming constructs. Tea modules
are called templates, and they are used for data presentation. Templates are generally used for
textual output and HTML, and thus text printing operations are designed to be as simple as
possible. A template cannot directly acquire or modify information. It relies on its host to
provide data. Data access operations are as important as printing output and are also very
simple.

Tea�s basic constraints:

• Data or data types cannot be directly created. They are acquired.

• Acquired data cannot be directly modified in any way.

• A template cannot directly cause harm to its hosting environment.

• Only the minimum amount of programming constructs is provided.

Because of the above constraints, Tea cannot do anything useful without a hosting environment.
Tea�s host must be Java-based, and all data are treated as objects. Properties are accessed from
objects by treating them as JavaBeans. The restricted programming model forces complex
programming tasks to be performed in Java, and this is how presentation is kept separate from
processing.

Here�s a very basic �Hello World� template that reads a message property from an object:

<% template HelloWorld(ContentObject obj) %>
Hello <% obj.message %>!

The �<%� and �%>� symbols delimit code regions, and text not in any code regions is printed as
is. The above template may also be written in a single code region as:

<% template HelloWorld(ContentObject obj)
"Hello " obj.message
%>

The way in which an instance of ContentObject is passed into the above template is left up to the
host. Often, data is acquired through custom functions, which must be written in Java.

The set of programming constructs provided in Tea are designed to resemble Java in syntax,
except semi-colons are not required to terminate statements. Like Java, the Tea character set is
Unicode. Tea has an if statement, just like Java�s. Tea does not, however, have a switch
statement, as it is not necessary. Looping in Tea is provided via a foreach statement. There is
not any while or for statement.

 Tea Template Language

 Page 7

With the exception of passed-in parameters, local variables are not (and cannot) be declared
against a type. Variable declarations are implicit. Variables can use primitive types or object
references, but all data appears as if they were objects. Yet Tea is still strongly and statically
typed.

Tea templates are compiled directly to Java byte code, without the use of a Java compiler. Tea
does not use any special kind of interpreter. Tea templates perform as well as hand-written Java
code. Any runtime exception caused while executing a template contains a stack trace that
identifies which template was executing and what line number was executing.

Because Tea must be integrated into a hosting environment, the implementation is very modular
at both the compiler and runtime levels. Tea templates can be used to generate dynamic or static
HTML pages. There is no restriction on how data is output. Most Tea environments that support
running of Tea templates also support safe, dynamic template re-compilation. Any compilation
errors are reported in a fashion that best suits that environment. A web-based compilation page,
for example, will show detailed compilation errors on the web page.

1.1 Why Use Tea
In general, neither developers nor page designers author Tea templates. The goal is that they be
written and maintained by technical producers who are liaisons between developers and
designers.

Tea resulted from several years of experience with other web page building mechanisms. Most
web-based applications start out with HTML tags embedded in code, whether it be C, Perl, or
Java. This approach is adequate for small or first-time projects because it doesn�t take very long
to develop.

Because changes to page formatting can occur frequently, and developers don�t wish to make
these changes, they inevitably evolve into using some kind of token replacement templating
mechanism. Each token is just a placeholder for a string, which contains application-created
data. These template systems further evolve into supporting special constructs for formatting
tables, forms, and simple conditional logic.

When introducing programming constructs into a template, the challenge is to come up with
something that is powerful enough, yet at the same time be simple and safe. If its too powerful,
then complete applications could be developed in templates. If it is too weak, then HTML
formatting ends up in the application. If it isn�t simple or safe, then application developers end
up writing and maintaining templates.

Rather than embedding an existing language into something like an ASP or JSP, Tea is a
language specially designed to meet the requirements of a templating system. It is safe, simple,
efficient, and powerful.

In one instance, Tea is integrated with a special servlet. This servlet gives Tea templates control
over page building, while retaining strong ties to a back-end application written by a Java
developer. While this servlet provides functionality similar to that of JSPs, Tea enforces correct
model-view separation because of the intentional language limitations. Although this is also the
suggested separation model in JSPs, it cannot be enforced. In addition, Tea templates don�t

 Tea Template Language

 Page 8

support programming features that can be used irresponsibly. Modifications need not go through
a strict review and testing phase, which would still be required for JSPs.

Everyone working on a project should be empowered to do their job the most effectively, and
Tea does its part by letting you do exactly what you need, as easily as possible, and no more.
Even on projects run by just developers, using Tea is still beneficial. It encourages good
development practices and it makes applications easier to maintain.

 Tea Template Language

 Page 9

2. JAVA INTEGRATION

Tea is designed to work within a Java environment, and the Tea language itself is patterned after
the Java language. Tea accesses properties from objects that follow the JavaBean conventions,
and because Java is case-sensitive with respect to names, so too is Tea. Standard Java objects are
used in Tea for strings, numbers, collections, etc.

Tea differs from Java in many respects, mostly due to the reduced set of features. Variables in
Tea are implicitly types, but passed-in parameters are specified just like in Java. Tea supports
both primitive types and objects, but from the template they all appear as objects. Tea converts
between primitive types and their peers (int ↔ Integer) automatically. Other special type
conversion rules (see section 6 Type Conversion) are also applied automatically.

Tea templates compile into Java class files and execute just the same within a Java Virtual
Machine. The Tea compiler does not generate intermediate Java files and hand them off to a
Java compiler, but it instead generates the class files directly. Still, the resulting class files are as
efficient as any handwritten Java code.

Because no Java compiler is used, Tea can be distributed much more easily. All that�s required
is a Java2 runtime environment. Sun�s JRE can be used, but the SDK isn�t necessary.

When compiled to class files, the Tea source file information, including line numbers, is
preserved. If an exception is thrown from a template or from a method called by a template, an
entry appears in the stack trace referring directly to the template. The source file information
contains the �.tea� extension and the line number matches up directly with the templates source
file. Tea templates should be compatible with most Java debugging environments.

Tea isn�t designed as a standalone system. Whereas a Java program can be launched from a main
method in a class, this concept doesn�t really make sense in Tea. Tea requires a hosting system
to be compiled to and run in.

The Tea implementation basically supports two components: the compiler and the runtime. A
host environment may integrate with either of these components or with pieces of them.
Integrating with both components results in a complete Tea integration.

Creating a new host environment requires some knowledge of the Tea implementation. The
following is an example of a very simple complete integration, but it is enough to get one started
in creating a custom host environment. Most developers, however, will use an existing
environment like the TeaServlet, and won�t need to know how to create a host environment.

import java.io.File;
import java.io.IOException;
import com.go.tea.runtime.TemplateLoader;
import com.go.tea.runtime.DefaultContext;
import com.go.tea.util.FileCompiler;
import com.go.tea.util.ConsoleErrorReporter;
import com.go.trove.util.ClassInjector;

public class SimpleTea {

 Tea Template Language

 Page 10

 /**
 * Test program executes a template named Test that accepts a
 * single String argument. For example,
 * <pre>
 * <% template Test(String arg) %>
 * Message is: <% arg %>
 * </pre>
 */
 public static void main(String[] args) throws Exception {
 SimpleTea tea = new SimpleTea(new File("."), "simple");
 String result =
 tea.executeTemplate("Test", new Object[] {"Hello World"});
 System.out.println(result);
 }

 private String[] mNames;
 private int mErrorCount;
 private TemplateLoader mLoader;

 public SimpleTea(File rootSourceDir, String rootPackage)
 throws IOException
 {
 ClassInjector injector = new ClassInjector((File)null, rootPackage);
 FileCompiler compiler = new FileCompiler
 (rootSourceDir, rootPackage, null, injector);
 compiler.setRuntimeContext(SimpleContext.class);
 compiler.addErrorListener(new ConsoleErrorReporter(System.err));
 compiler.setForceCompile(true);
 mNames = compiler.compileAll(true);
 mErrorCount = compiler.getErrorCount();
 mLoader = new TemplateLoader(injector, rootPackage);
 }

 public int getErrorCount() {
 return mErrorCount;
 }

 public String[] getTemplateNames() {
 return (String[])mNames.clone();
 }

 public TemplateLoader.Template getTemplate(String name)
 throws ClassNotFoundException, NoSuchMethodException
 {
 return mLoader.getTemplate(name);
 }

 public String executeTemplate(String name, Object[] parameters)
 throws Exception
 {
 StringBuffer buf = new StringBuffer(256);
 SimpleContext context = new SimpleContext(buf);
 getTemplate(name).execute(context, parameters);
 return buf.toString();
 }

 public static class SimpleContext extends DefaultContext {
 private StringBuffer mBuffer;

 public SimpleContext(StringBuffer buffer) {
 mBuffer = buffer;
 }

 public void print(Object obj) {
 mBuffer.append(toString(obj));
 }
 }
}

 Tea Template Language

 Page 11

Since Tea templates have no direct way of obtaining data, a host environment is responsible for
providing it. There are two ways in which this can be done. The host may pass in objects to the
template parameters and it can provide a custom context that supplies functions.

A context is a special class that Tea templates require for execution. It defines functions that are
callable by templates and it also provides the methods for templates to output data. The print
functions can be called directly, but templates usually don�t do this. See the section on functions
(5.1 Calling Functions and Templates) and expression statements (4.1.7 Expression Statement)
for more information.

The SimpleTea example doesn�t provide any special context functions other than the required
print method and defaults, but it does pass in objects to the template via its parameters. Once a
template has obtained an object, it can access bean properties and objects from it.

Although Tea is designed primarily for textual output, you may notice that there are no
restrictions on how a context can be defined and what objects the print method may contain.
Tea-based systems can also be created for producing image data or even for building GUIs. The
ability to pass in a block of code to a function also helps in this capacity (see section 4.1.5
Substitution Statement).

 Tea Template Language

 Page 12

3. LEXICAL STRUCTURE

The lexical structure of Tea is based on Java�s. The chapter titled �Lexical Structure� in The
Java Language Specification, defines most of Tea�s lexical structure.

Tea templates are defined in the unicode character set and the language is case-sensitive, just like
Java. Tea uses Java�s style and early processing of unicode escapes. Comments and white space
are the same. Tea identifiers do not allow �$� characters, but are otherwise the same. String and
number literals are very similar.

A template is composed of code and text regions. Code regions are delimited by �<%� and �%>�
symbols. Any text not in the code region is output by the template as-is with only one minor
conversion. All line break separator codes in text regions are converted to linefeeds '\n' (ASCII
10). No string escapes (including unicode escapes) are processed in text regions. Here is a
template that mixes code and text regions:

<% template MyTemplate(PageInfo page) %>
<html><head><title><% page.title %></title></head>
<body>
<h1><% page.heading %></h1>
<table>
 <% foreach (item in page.list) { %>
 <tr><td><% item.name %></td><td><% item.desc %></td></tr>
 <% } %>
</table>
</body>
</html>

The code delimiter symbols are not actually Tea lexemes, but are instead processed in an initial
preprocessing step that identifies text as being in a code region or not. The Tea scanner converts
text regions into string literals. Put another way, text regions are simply multi-line string literals
delimited by �%>� and �<%� symbols (see section 3.2.3 String Literals).

3.1 Keywords
The following are the keywords in the Tea language. The reserved words �null�, �true�,
�false�, and �isa�, discussed in the next sections, are not considered to be keywords.

Keyword:
and

break

call

else

foreach

if

in

not

or

reverse

 Tea Template Language

 Page 13

template

3.2 Literals
Literal:

NullLiteral

BooleanLiteral

StringLiteral

IntegerLiteral

FloatingPointLiteral

3.2.1 Null Literal
NullLiteral:

null

3.2.2 Boolean Literals
BooleanLiteral:

true

false

3.2.3 String Literals
StringLiteral:

" StringCharactersopt "

' StringCharactersopt '

Tea string literals are for the most part, just like Java�s. The first difference is that they may be
delimited by apostrophes instead of quotes. Apostrophes are used by Java to delimit character
literals, but Tea does not have character literals.

The other difference is that octal escapes are not supported in strings, although \0 (the null
character) is.

3.2.4 Integer Literals
IntegerLiteral:

 DecimalIntegerLiteral

 HexIntegerLiteral

 Tea Template Language

 Page 14

Tea integer literals are just like Java integer literals except Tea does not support octal integer
literals. As a result, decimal integer literals may start with any number of �0� digits.

3.2.5 Floating Point Literals
The only difference between Tea�s floating-point literals and Java�s is that the decimal point
must always have a digit before and after it.

3.3 Separators
Separator: one of

() { } []

; , .

3.4 Operators
Operator: one of

= # ## isa

== != < > <= >=

+ - * / % &

3.4.1 Ellipsis Operator
The ellipsis operator �...� is used when declaring that templates require a substitution
parameter, and it is used where block substitutions should be placed. In Tea, the ellipsis means,
�more statements may follow.�

 Tea Template Language

 Page 15

4. TEMPLATES

A Tea compilation unit consists of a single template. If templates are stored on a file system,
then each template file must contain exactly one template definition. The name of the file must
consist of the template name followed by the extension �.tea�.

Every template must begin with a template declaration, which is defined in a code region (see
section 3 Lexical Structure). Therefore, every template must begin with a code region. The
template declaration defines the name of the template and any parameters that must be passed to
the template.

Template:

 TemplateDeclaration StatementListopt

TemplateDeclaration:

template Identifier (FormalParameterListopt) SubstitutionParameteropt

The template�s formal parameter list follows the template name in the declaration and must be
delimited by parentheses. A comma separates each parameter in the list. Formal parameters
require a class name followed by an identifier, which names it. Tea does not allow primitive
types to be declared, only object types. Object type names must be fully qualified except for
those defined in the java.lang and java.util packages. The type declaration may define an array
(or an array of arrays) just like in Java, using �[� and �]� symbols.

FormalParameterList

 FormalParameter

 FormalParameterList , FormalParameter

FormalParameter

 Type Variable

Type:

 Name

 Type []

 Tea Template Language

 Page 16

After the template declaration, a template can have text regions or code regions with any
statements allowed by Tea. Statements can also appear inside the same code region that the
template declaration was in.

Templates can invoke other templates, just like calling a function. Any template can be invoked
by another template. Templates may also return a value to the caller. No special syntax is
required in the template declaration to support callable templates or return types.

A template may require that it receive one substitution block parameter. This parameter is
denoted by the ellipsis symbol �...�. With this parameter, any template invoking this template
must pass in a block of code. A block of code begins with a left curly brace and ends with a right
curly brace. The template that accepts the substitution parameter uses the substitution statement
to insert the substitution.

Examples:

From SmallTemplate.tea:
<% template SmallTemplate(pkg.ContentObject obj) %>
<html><body>
This page was created on <% obj.date %>.

<%
user = obj.user
if (user != null and user.name != null) {
 'Hello ' user.name '!'
}
%>
</body></html>

From NewsPage.tea:
<% template NewsPage(org.news.NewsStory story)
// Pass a title and a substitution block to SimplePage
call SimplePage(story.title, "#ffffff") {
 '<h1>' story.headline '</h1>'
 foreach (paragraph in story.body) {
 '<p>' paragraph.body
 }
}
%>

From SimplePage.tea, called from NewsPage:
<% template SimplePage(String title, String color) { ... }
'<html><head><title>' title '</title></head>'
if (color == null) {
 '<body>'
}
else {
 '<body bgcolor="' & color & '">'
}
...
'</body></html>'
%>

 Tea Template Language

 Page 17

4.1 Statements
Tea statements are used for variable assignments, controlling the flow of execution, performing
looping, calling functions, and calling other templates. Statements are also used to output from a
template and perform block substitutions. Statements need not terminate with a semi-colon, as
they do in Java. Statements are not separated by new lines, but by a carefully designed language
grammar. In very rare circumstances, a semi-colon is required to disambiguate statement
separation.

Statement:

 EmptyStatement

 IfStatement

 ForeachStatement

 SubstitutionStatement

 AssignmentStatement

 CallStatement

 ExpressionStatement

The set of operations that can be performed by Tea statements is less than that provided by most
application programming languages. This aids in enforcing a policy that keeps templates from
performing complex operations that should be left to a hosting system.

4.1.1 Semi-colons
Although Tea does not require the use of the semi-colon as a statement terminator, they can still
be used. Java programmers are likely to use them out of habit or for stylistic reasons. Under
certain special conditions, a semi-colon may be required to enforce statement separation. The
following two statements

a
-b

would not be interpreted as printing the value of variable �a� followed by the negative value of
variable �b�. Instead it would be

a � b

which means print the value of �a� minus �b�. This would not be a problem if the �-� token was
not overloaded to mean both subtraction and negation. Here is the separated version:

a;
-b

Alternatively, parentheses can be used, but it is a clumsier notation:

 Tea Template Language

 Page 18

(a)
(-b)

In this example, if the parentheses were omitted from the first expression, the compiler would
decide that �a� is a function receiving parameter �-b�.

4.1.2 Break Statement
The break statement can be used to exit from a loop. See 4.1.4 Looping.

Example:
foreach (count in 1..10) {
 count
 if (count > 4) {
 break
 }
}

Placing unreachable code after the break statement will result in an error at compile time.

4.1.3 If Statement
Tea�s if statement is just like Java�s except in one way: braces are always required for its
enclosed statements.

IfStatement:

if (Expression) Block ElseStatementopt

ElseStatement:

else Block

else ifStatement

Block:

{ StatementListopt }

Examples:

 Tea Template Language

 Page 19

if (fileName == null or fileName.length == 0) {
 // Assign a default filename if empty
 fileName = "default"
}

if (name == "Bob") {
 // Bob is welcome...
 "Hello Bob!"
}
else {
 // ...others are not
 "Go away, " & name & "."
}

if (count == -1) { count = 0 } else if (count >= 15) { count = count � 15 }

4.1.4 Looping
The foreach statement is the only loop flow control statement in Tea. There is no way to modify
the loop count variable from within the loop, but the break statement can be used to exit the
loop. Foreach statements iterate over the values of an array, a collection or a range of values.
When the optional reverse keyword is specified, the values are iterated in reverse order.

Like the if statement, blocks are required to be enclosed in braces.

ForeachStatement:

foreach (Variable in Expression) Block

foreach (Variable in Expression reverse) Block

foreach (Variable in Expression .. Expression) Block

foreach (Variable in Expression .. Expression reverse) Block

The variable used in the foreach statement is re-assigned during the loop�s execution, and its
type is redeclared to be the appropriate element type of the given expression. If the loop variable
was already declared outside of the loop, then the new declaration is promoted outside of the
foreach scope. See also sections 4.1.6 Variable Assignment and 6.4 Variable Promotion.

Example:

 Tea Template Language

 Page 20

// Loop through and print every item in the page's list
foreach (item in page.list) {
 item
}

// Loop through in reverse
foreach (item in page.list reverse) {
 item
}

// Loop from 1 to 10, inclusive
foreach (count in 1..10) {
 "Count is " & count
}

// Print all the characters of a string
// NOTE: if the message length is zero, the range is 0..-1.
// Whenever the second value in the range is less than the
// first value, the foreach will loop zero times.
message = "hello"
foreach (index in 0..message.length - 1) {
 "Letter at index " & index & " is: " & message[index] & "\n"
}

// Loop from 10 to 0, inclusive
foreach (count in 0..10 reverse) { ... }

Unless looping through a range, the actual object looped through can be an array or a Collection
(java.util.Collection). Objects that implement the Collection interface cannot be iterated in
the reverse direction, but those that implement the List interface (java.util.List) can be.

If looping over a value of ranges, they can only be integers. Both the beginning and ending of
the range is inclusive. If a number at the beginning or ending of a range is not an integer, it is
rounded down to the nearest integer.

Because Java has no parameterized types, when a Collection is used in the foreach loop, Tea can
only infer that its elements are Objects, even if they may be subclasses of Object. If the template
only needs to print the values of the elements, then this isn�t a problem, but if the template needs
a specific property of the object, access is denied. In addition, Tea has no direct cast operation.

There are several ways to handle this situation. The easiest thing to do is to pass an array to the
template instead of a Collection. An alternative is to extend the Collection class being used and
provide a special field that Tea uses to determine the element type. The Java signature of the
field is:

public static final Class ELEMENT_TYPE

The compiled code then trusts that the elements are of the specified type and performs a blind
cast. If the cast fails, a ClassCastException is thrown at runtime.

The least preferred technique is to use the �isa� operator in an if statement in order to perform a
cast on the elements (see 4.2.5 �isa� Operator).

You can exit a loop by using the break statement (see 4.1.2 Break Statement).

 Tea Template Language

 Page 21

4.1.5 Substitution Statement
The substitution statement is only allowed in templates that declare that they receive a block
substitution parameter. Templates can declare at most one block substitution parameter. The
substitution statement is used to substitute the code for the block passed in at the statement�s
location. The substitution statement is simply the ellipsis (...).

SubstitutionStatement:
...

A substitution statement can appear in multiple locations in a template and even in foreach and
if statements. The most common use for a substitution is for creating �shell� templates, from
the example earlier:

<% template SimplePage(String title, String color) { ... }
'<html><head><title>' title '</title></head>'
if (color == null) {
 '<body>'
}
else {
 '<body bgcolor="' & color & '">'
}
...
'</body></html>'
%>

A substitution can also be passed to a context-defined function, using the special
com.go.tea.runtime.Substitution class. This example defines a simple looping function:

public void loop(int count, Substitution s) throws Exception {
 while (--count >= 0) {
 s.substitute();
 }
}

The template might invoke this function as:

loop (100) {
 "This message is printed 100 times\n"
}

4.1.6 Variable Assignment
With the exception of passed-in parameters, Tea variables are not declared. Rather, their type is
inferred based on assignment. A variable�s type is dynamic, and can change after another
assignment. Passed-in parameters behave like ordinary local variables in that they can be re-
assigned, and they can change type. Variables can also be assigned by a foreach statement (see
4.1.4 Looping).

 Tea Template Language

 Page 22

AssignmentStatement:

 Variable = Expression

Assignments can only be made to variables. Array elements cannot be assigned values, like they
can in Java. Assignments of this form are not allowed: a[i] = x; This restriction makes it
possible to pass collections to templates without fear of the template modifying it.

Examples:
message = "Hello" // Assign the string literal �Hello� to message

result = 50 // Assign the integer literal 50 to result

amount = result + 20 // Assign the calculated sum of result and 20

message = amount // Re-assign message with the integer amount

Unlike Java, assignment statements cannot be expressions. This means that assignments cannot
be chained together like they can in Java: a = b = c = 2.

4.1.7 Expression Statement
All expressions can be statements (see 4.2 Expressions). When an expression takes on the form
of a statement, the return value is sent directly to the template�s execution context. The
execution context will typically take this value, convert it to a string, and write it to an output
stream. This is the main way in which templates output data.

ExpressionStatement:

 Expression

Any expression, which is not part of another statement, is automatically passed to the built-in
print function as if it were done directly. The following two statements are equivalent:

"Hello world"
print("Hello world")

Calling the print function directly in templates is not preferred, and tools that display execution
context functions should hide the print function.

If the last statement in a template is an expression statement, the expression results (complete
with type information) are passed back to the calling template. The caller can then use the call
statement as a call expression (see 5.1 Calling Functions and Templates). If the caller does not
do anything special, then the call expression is treated as an expression statement, and the caller
automatically prints out the results.

 Tea Template Language

 Page 23

4.2 Expressions
An expression is any program fragment that produces some kind of value. Expressions are
evaluated in a specific order, and parentheses can be used to override that ordering. A sub-
expression bounded by parentheses is evaluated first within a sub-expression. Otherwise, the
order of operations is the same as that for Java, wherever applicable. See section 7 Grammar
Summary for the order of operations.

4.2.1 Accessing Properties
All objects have properties, and these properties are accessible using the JavaBeans Introspector.
Essentially, any object passed to or used in a template is a JavaBean. JavaBeans defines two
kinds of properties, non-indexed and indexed. Tea can access all non-indexed properties on a
JavaBean, but can only access a certain kind of indexed property.

Defining a non-indexed property in a Java class is really simple. The method must return
something, must take no parameters, and its name must start with �get�. The part of the method
name that follows �get� defines the name of the property. Capitalization rules are applied so that
the method getSizeOfThing defines the property �sizeOfThing� and the method getURL defines
the property �URL�.

Arrays, Collections and strings also have a special property named �length� which isn�t defined
by a get method. For arrays and Collections, length is the number of elements they contain. For
strings, it is the number of characters they contain.

JavaBeans defines several different forms for indexed properties, but Tea only understands one
kind: unnamed indexed properties. A method that returns something, takes a single parameter
and is named �get� follows the design rules for unnamed indexed properties. Java�s Map and
List interfaces follow these rules, and Tea accesses elements from them via this design pattern.

LookupExpression:

 Factor Lookupopt

Lookup:

 Lookupopt . Identifier

 Lookupopt [Expression]

A property access is called a lookup, and Tea has different syntax for its two supported kinds of
lookups. A lookup can be applied to any expression, but it is usually applied to variables or
chained to other lookups. Non-indexed properties are looked up from an expression using a dot
(.) followed by the property name. Indexed properties are looked up using an expression
bounded by square brackets.

If the type of an indexed property is Object, (like it is in Map and List) and a element type is
defined for that class (by extending Map or List), then Tea will cast the object to that element
type. An element type for a class that has an indexed property is defined the same as for

 Tea Template Language

 Page 24

Collections described by the foreach statement (see 4.1.4 Looping). The Java signature of the
field is

public static final Class ELEMENT_TYPE

Like its use in foreach, if an element is returned that can�t be cast to the specified element type,
a ClassCastException is thrown at runtime.

Examples:

// Access the name object from user
name = user.name
// Access the first name
f = name.first
// Access the last name by chaining
last = user.name.last

// Access an element from the users array and get the age
"Age is " & users[10].age

// Lookup a team object by code
team = allTeams[�SEA�]

// Get the last character from a string
str[str.length - 1]

4.2.2 Arithmetic
Tea can perform arithmetic on both integers and floating-point numbers. Supported operations
are addition, subtraction, multiplication, division, division remainder and negation. The
operators are +, -, *, /, %, and - respectively. In complex arithmetic expressions, negate is
performed first, left-to-right. Multiplication, division, and remainder are performed next,
followed by addition and subtraction. This order of operations matches Java�s.

AdditiveExpression:

 MultiplicativeExpression

 AdditiveExpression + MultiplicativeExpression

 AdditiveExpression – MultiplicativeExpression

MultiplicativeExpression:

 UnaryExpression

 MultiplicativeExpression * UnaryExpression

 MultiplicativeExpression / UnaryExpression

 MultiplicativeExpression % UnaryExpression

Examples:

 Tea Template Language

 Page 25

// Simple addition
x = a + b

// Increment a count
count = count + 1

// More complex example
result = -((value � 10.0/y) * 50) % 2

In order to perform a division on integer values, but produce a fractional result, adding 0.0 to at
least one of the values forces a floating point division. The addition by zero is optimized away
and is not actually performed.

x = 3
y = 2
// Integer division prints 1
x / y
"
"
// Floating point division prints 1.5
(x + 0.0) / y
"
"

4.2.3 String Concatenation
String concatenation in Java is performed with the plus operator. Tea uses the ampersand (&)
operator instead because of the way the template language determines type information.
Overloading the plus operator would create typing ambiguities.

ConcatenateExpression:

 AdditiveExpression

 ConcatenateExpression & AdditiveExpression

Examples:
// Equivalent to text = "Hello World"
text = "Hello" & " " & 'World!'

y = 5
'498234 divided by "y" is ' & 498234 / y

Output:
498234 divided by "y" is 99646

Both the left and right values of a concatenation are converted to strings (if they are not already
strings) using the hidden toString function. Any formatting settings are applied when
performing the string conversion.

String concatenation can also be used to force an object to be converted to a string.
Concatenating the empty string forces a string conversion, but the actual concatenation operation
is optimized away.

 Tea Template Language

 Page 26

x = 43554
x = x & ""
// x is now a string, and 5 is printed out
x.length

4.2.4 Relational Tests
Tea supports expressions for performing relational tests. They are used most often in the context
of an if statement condition, although their result can be assigned to a variable. The resulting
type of a relational test is always boolean. Six operators are supported, and they fall into two
categories: equality tests and comparison tests.

Equality tests are equals (==) and not-equals (!=), and they work for any kind of data type. When
an equality test is performed against a string, the other operand is also converted to a string. The
following test is legal and performs a string equality test: 5 == "5".

Whenever an equality test is performed on objects, the �equals� method is invoked is possible.
If either operand is null, the Tea compiler ensures that no NullPointerException is ever
generated, and it may not call the equals method at all if a test is being made against null. The
following test will never invoke the equals method: x == null.

Comparison tests are less than (<), greater than (>), less than or equal (<=), and greater than or
equal (>=). Comparison tests can be performed on numbers, strings, or any object that
implements the Comparable interface. Both values in the comparison must be of the same type.
Unlike equality tests against strings, comparisons against strings never force a string conversion.

A comparison between two numbers will perform a numerical comparison, and comparisons
between all other objects is performed using the �compareTo� method defined in the Comparable
interface.

EqualityExpression:

RelationalExpression

EqualityExpression == RelationalExpression

EqualityExpression != RelationalExpression

RelationalExpression:

ConcatenateExpression

RelationalExpression < ConcatenateExpression

RelationalExpression > ConcatenateExpression

RelationalExpression <= ConcatenateExpression

RelationalExpression >= ConcatenateExpression

RelationalExpression isa Type

Examples:

 Tea Template Language

 Page 27

// Check that the items are not null before looping through them
if (items != null) {
 foreach(item in items) {
 "Item is " & item
 }
}

// Do names A-M followed by names N-Z
"Everyone from A-M
"
foreach (name in allNames) {
 if (name < "N") {
 name & "
"
 }
}
"<p>Everyone from N-Z
"
foreach (name in allNames) {
 if (name >= "N") {
 name & "
"
 }
}

4.2.5 �isa� Operator
The �isa� operator is a special operator that works both like Java�s instanceof operator and
Java�s cast expressions. The left side of isa must be a simple variable expression. When used
with an if statement, the tested variable is automatically cast to the given type, within the scope
of the if statement�s then or else blocks.

Examples:
if (content isa app.pkg.News) {
 "Story is: " content.story
}

if (item isa app.pkg.Feature and content isa app.pkg.News) {
 "Info is: " item.info
 "Story is: " content.story
}
else if (item isa Object[]) {
 foreach (element in item) {
 element �
�
 }
}

4.2.6 Logical Operators
Logical operations are often used in conjunction with relational tests because they only operate
on booleans. Like Java, logical operations will short circuit. Tea�s logical operators are �or�,
�and� and �not�. This differs from Java in that the symbols ||, &&, and ! are used to denote
these operations.

Examples:
notitle = (title == null or title.sub == null)

if (section == "Sports" and sport == "MLB") {
 "Major League Baseball"
}

 Tea Template Language

 Page 28

value = not (x and y)

4.2.7 Array Creation
Tea templates can define read-only, pre-initialized arrays. Arrays created by this expression can
be indexed (zero-based) or associative (a Map). The array values can have any data type, and
they can be composed of either constants or any expression. Associative arrays can have any
type used for their keys, but usually strings or numbers will be used.

Based on the type of elements defined in the array, a common type is inferred. For any object
retrieved from the array, the only properties that are accessible are those defined for the common
type.

Arrays defined in templates can be used in the same way as an array passed to a template. This
means that elements are accessed using array property syntax (i.e. x[i]). In the case of indexed
arrays, they have a length property and can be used in a foreach statement.

The array creation expression is prefixed with a single hash (#) to denote an indexed array, and a
double hash (##) to denote an associative array. The list of elements is comma-delimited and is
contained inside parentheses. Associative arrays must have an even number of elements in the
list, and list pattern is key, value, key, value, etc.

NewArrayExpression:

 # (Listopt)

(Listopt)

Examples:
// An indexed array containing some letters
vowels = #("a", "e", "i", "o", "u")
// Access the 3rd vowel
letter = vowels[2]

// Loop through some words
foreach (word in #("The", "quick", "brown", "fox", "jumped")) {
 "Word: " & word & "
"
}

// Iterate over some special values
foreach (value in #(2,3,5,7,11,13,17,19,23,29)) {
 "The value is " & cardinal(value) & "
"
}

// Map abbreviations to descriptions
map = ##("MLB", "Major League Baseball",
 "NBA", "National Basketball Association",
 "NHL", "National Hockey League",
 "NFL", "National Football League")
"<title>" & map[sport.abbrev] & "</title>"

New indexed arrays are always implemented as ordinary Java arrays, and can be passed to
functions and other templates in the usual fashion. Associative arrays will implement the Map
interface, and in the current implementation, HashMap is used. When associative arrays are
passed to and from other templates, the element type information is preserved.

 Tea Template Language

 Page 29

5. FUNCTIONS

5.1 Calling Functions and Templates
The call statement is used to invoke other templates or to call built-in Java functions. Both
templates and Java functions may return a value. Ones that don�t, (they return void) are invoked
with a call statement. Otherwise, it is invoked with a call expression. The syntax of the two
types of calls are identical, and are only distinguished by the presence or absence of a return
value. A template returns a value using its last expression statement (see 4.1.7 Expression
Statement).

CallStatement / CallExpression:

Name (Listopt) Blockopt

call Name (Listopt) Blockopt

The optional block part of the call statement is used to pass a block to another template or to a
built in Java function.

A template can be called by its short name or its full name. A template�s short name is the same
as defined in its declaration. Its full name is based on the root directory from which it is stored.
Essentially, templates can be packaged, but templates don�t have package declarations. For
example, the full name of a template declared as �header� in the �common� directory is named
�common.header�. When a template invokes another template within the same package, the full
name is not required.

Functions are defined in a template�s runtime context class. The template has no control over
what context it receives. It is the responsibility of the hosting system to provide one. Any
function that contains �$� characters in the name can be invoked in Tea by substituting �.�
characters.

A set of standard functions are defined in the Java interface com.go.tea.runtime.Context and
its sub-interface, com.go.tea.runtime.UtilityContext. Functions that apply to locale and
formatting are �sticky� and remain active until the top-most template returns or the setting is
changed again. In addition, a called template can change these settings, possibly affecting the
caller. The string manipulation functions do not alter the first string argument, but instead return
(possibly) a new string with changes.

Examples:

 Tea Template Language

 Page 30

// Convert to lowercase
message = toLowerCase(message)

// Invoke a template named "header" in the same package as this one
call header("Header text")

// Invoke a template using its full name
call common.header("Header text")

// Invoke a template and pass a substitution block
name = "John"
call bigtext() {

if (name == "Bob") {
 // Bob is welcome...
 "Hello Bob!"
}
else {
 // ...others are not
 "Go away, " & name & "."
}

}

The header and bigtext templates are defined as follows:
<% template header(String title) %>
<html>
<head><title><% title %></title></head>
<body>

<% template bigtext() {...} %>
<% ... %>

5.2 Function List

setLocale
setLocale(Locale locale)
setLocale(String language, String country)
setLocale(String language, String country, String variant)

Setting the locale resets date and number formats to the default for that locale. Setting a locale
of null resets date and number formats to the system defaults. Since a template cannot create a
specific Locale object itself, the first form is most useful if the hosting system provides a Locale
object via a function or bean property.

getLocale
java.util.Locale getLocale()

Returns the current locale setting. Null if none set.

getAvailableLocales
Locale[] getAvailableLocales()

This function returns, in Locale objects, a list of all the available locales in the system. This is
useful for writing a template that displays the capabilities of its hosting system.

 Tea Template Language

 Page 31

nullFormat
nullFormat(String format)

By default, null references are printed with the string �null�. This function allows that setting to
be overridden. Passing null sets the format back to �null�.

getNullFormat
String getNullFormat()

Returns the current null format specification. Null if none set.

dateFormat
dateFormat(String format)
dateFormat(String format, String timeZoneID)

Defines a format to use when printing dates from templates. Passing null sets the format back to
the default. The format string is of the form �MM d yyyy�. Date formatting is provided by the
Java class java.text.SimpleDateFormat. Refer to its documentation for more information.

getDateFormat
String getDateFormat()

Returns the current date format specification.

getAvailableTimeZones
TimeZone[] getAvailableTimeZones()

Returns, in TimeZone objects, a list of all the available time zones in the system. This is useful
for writing a template that displays the capabilities of its hosting system.

getDateFormatTimeZone
String getDateFormatTimeZone()

Returns the current date format time zone.

numberFormat
numberFormat(String)

Defines a format to use when printing numbers from templates. Passing null sets the format back
to the default. The format string is of the form �#.#�. Number formatting is provided by the Java
class java.text.DecimalFormat. Refer to its documentation for more information.

 Tea Template Language

 Page 32

getNumberFormat
String getNumberFormat()

Returns the current number format specification. Null if none set.

getNumberFormatInfinity
String getNumberFormatInfinity()

Returns the current number format for infinity. Null if none set.

getNumberFormatNaN
String getNumberFormatNaN()

Returns the current number format for NaN (Not-A-Number). Null if none set.

currentDate
Date currentDate()

Returns a Date object with the current date and time of when this function is called. Subsequent
calls within the same template may return a different date.

startsWith
boolean startsWith(String str, String prefix)

Tests if the given string starts with the given prefix.

endsWith
boolean endsWith(String str, String suffix)

Tests if the given string ends with the given suffix.

find
int[] find(String str, String search)
int[] find(String str, String search, int fromIndex)

Finds the indices (in an array) for each occurrence of the given search string in the source string,
optionally starting from the given index.

findFirst
int findFirst(String str, String search)
int findFirst(String str, String search, int fromIndex)

Finds the index of the first occurrence of the given search string in the source string, optionally
starting from the given index, or -1 if not found.

 Tea Template Language

 Page 33

findLast
int findLast(String str, String search)
int findLast(String str, String search, int fromIndex)

Finds the index of the last occurrence of the given search string in the source string, optionally
starting from the given index, or -1 if not found.

substring
String substring(String str, int start)
String substring(String str, int start, int end)

Returns a substring using the substring method defined for the Java String class. Start and end
position is zero-based, and the end index is exclusive.

toLowerCase
String toLowerCase(String str)

Returns a new string of all lowercase letters from the contents of the string passed in.

toUpperCase
String toUpperCase(String str)

Returns a new string of all uppercase letters from the contents of the string passed in.

trim
String trim(String str)

Trims all leading and trailing whitespace characters from the given string.

trimLeading
String trimLeading(String str)

Trims all leading whitespace characters from the given string.

trimTrailing
String trimTrailing(String str)

Trims all trailing whitespace characters from the given string.

 Tea Template Language

 Page 34

replace
String replace(String source, String pattern, String replacement)
String replace(String source, String pattern, String replacement,
 int fromIndex)
String replace(String source, Map patternReplacements)

Replaces all exact matches of the given pattern in the source string with the provided
replacement, optionally starting from the given index. Another form applies string replacements
using the pattern-replacement pairs provided by the given map (associative array). The longest
matching pattern is used for selecting an appropriate replacement.

replaceFirst
String replaceFirst(String source, String pattern, String replacement)
String replaceFirst(String source, String pattern, String replacement,
 int fromIndex)

Replaces the first exact match of the given pattern in the source string with the provided
replacement, optionally starting from the given index.

replaceLast
String replaceLast(String source, String pattern, String replacement)
String replaceLast(String source, String pattern, String replacement,
 int fromIndex)

Replaces the last exact match of the given pattern in the source string with the provided
replacement, optionally starting from the given index.

shortOrdinal
String shortOrdinal(Number n)

Returns a number�s abbreviated ordinal text i.e. 1st, 2nd, 3rd etc. Tea currently does not support
localized ordinal numbers.

ordinal
String ordinal(Number n)

Returns a number�s ordinal text i.e. first, second, third etc. Tea currently does not support
localized ordinal numbers.

cardinal
String cardinal(Number n)

Returns a number�s cardinal text i.e. one, two, three etc. Tea currently does not support localized
cardinal numbers.

 Tea Template Language

 Page 35

6. TYPE CONVERSION

Although variables in Tea are implicitly typed, Tea is still strongly typed. Because no direct cast
operation or conversions are supported, type conversion operations are performed automatically.

Conversions that are automatically applied are usually guaranteed to always succeed. For
example, an automatic conversion from Integer to String is preferred over String to Integer
because Strings can represent the value of any Integer, but the opposite is not always true. Other
kinds of conversions are applied to convert primitive data types to objects and vice versa. When
performing addition on an int and an Integer, the Integer is converted to an int in order for the
addition to be applied. This conversion could fail, however, if the Integer type being converted
references null. In this case, a NullPointerException is thrown.

If the compiler cannot perform a conversion for any reason, the type checker generates an error
and the template doesn�t compile. This is generally caused by a true error on the part of the
template writer, for example trying to use a boolean where an int should go.

6.1 Method Binding
Since Java methods can be overloaded to accept parameters of different types, the Tea compiler
needs to decide on which method to bind to based on which types fit best. In Java, a cast
operation can be applied which forces the binding if there is an ambiguity. Since Tea has no cast
operation, the compiler binds to a method by calculating a conversion cost to all the parameters.

A conversion from an int to an Integer is deemed to cost higher than converting an int to a long.
If a method is overloaded to accept an Integer or a long as a parameter and the template has an
int, the method that takes the long is preferred and is called instead.

6.2 Primitive Types
Tea treats primitive types as though they were objects, except it will use primitive values
wherever possible for performance. If a template passes an int to a method that accepts an
Integer, a Number or just any Object, the int is converted to an Integer. If the template passes a
Number to a method that accepts an int, the intValue method is called to get at the int value.

Conversion can also be applied between primitives of differing precision. If given a choice, the
compiler attempts to apply the conversion with the least loss of precision. A conversion of an int
to a double is preferred over the reverse, for example. Also, if given a choice, the compiler will
choose to apply a conversion that does not create a new object.

Tea only performs conversions between primitive data types that represent numbers. For
example, a number cannot be used where a boolean is accepted. Even though Java treats char as
an unsigned 16-bit number, Tea treats it as a character, and it often gets converted to a String.

A numerical conversion from an integer to a double or float can always be forced by adding 0.0
or 0.0f. This is useful for displaying the result of a division without losing the fractional part.

 Tea Template Language

 Page 36

6.3 Conversion to String
Any object and primitive type in Java can be converted to a string. If given the choice, however,
the Tea compiler avoids doing this as it is considered a last resort. Binding an int to an Object
parameter is preferred over a String parameter because it will convert it to an Integer, which is a
more precise representation.

String conversion may cause a formatting operation to be applied. If the object being converted
is null, the current null format is applied (see 5.2 Function List). If a date or a number, the
current date or number format is applied.

The string concatenation operation, �&�, always forces its operands to be converted to strings,
and the resulting expression is (of course) a string. Concatenating with �� is a convenient way of
forcing an expression to be converted to a string.

6.4 Variable Promotion
A variable assignment in the scope of a block can be promoted to appear after that scope. This
applies to if statements, foreach statements and calls that accept blocks. Consider the following
code:

w = "Monday" // w is a String
if (value == "something") {
 x = "Hello" // x is a String
 y = 76.6 // y is a double
 z = "ZZZ" // z is a String
}
else {
 w = currentDate() // w is a Date
 x = 56 // x is an int
 y = 89 // y is an int
}

After the if statement, the following variables will be available for use: w, x and y with the
respective types: Object, Object and double. The z variable is unavailable since it was only
assigned in the then part of the if statement, and therefore there is no guarantee that will contain
a legal value.

When promoting variables from an inner scope, the Tea compiler chooses a compatible type that
represents the merged type as specifically as possible. For objects, it does this by analyzing the
inheritance graph. The common type produced for java.util.Vector and java.util.Set is
java.util.Collection.

 Tea Template Language

 Page 37

7. GRAMMAR SUMMARY

Tea�s grammar is designed to resemble Java�s, but because semi-colons are optional, some
elements have unique appearances in order for the grammar to be more unambiguous. Most
notably is the format to define new arrays. Without the leading hash symbols, a new array list
can appear to be a parameter list or a simple expression. Unlike Java, new array values are
specified within a list delimited by parentheses instead of braces. Use of braces seems
inconsistent because they should be used to group statements, not expressions.

Call statements can optionally begin with a �call� keyword to indicate a template call over a
function call. Because the function calling form does not begin with this keyword, Tea parsers
may require special logic in order to properly parse it.

Template:

 TemplateDeclaration StatementListopt

StatementList:

 Statement

 StatementList Statement

TemplateDeclaration:

template Identifier (FormalParameterListopt) SubstitutionParameteropt

FormalParameterList

 FormalParameter

 FormalParameterList , FormalParameter

FormalParameter

 Type Variable

Type:

 Name

 Type []

 Tea Template Language

 Page 38

Name:

 Identifier

 Name . Identifier

Variable:

 Identifier

SubstitutionParameter:
{ ... }

Statement:

 EmptyStatement

 IfStatement

 ForeachStatement

 SubstitutionStatement

 AssignmentStatement

 CallStatement

 ExpressionStatement

EmptyStatement:
;

IfStatement:

if (Expression) Block ElseStatementopt

ElseStatement:

else Block

else ifStatement

Block:

{ StatementListopt }

 Tea Template Language

 Page 39

ForeachStatement:

foreach (Variable in Expression) Block

foreach (Variable in Expression reverse) Block

foreach (Variable in Expression .. Expression) Block

foreach (Variable in Expression .. Expression reverse) Block

SubstitutionStatement:
...

AssignmentStatement:

 Variable = Expression

CallStatement:

Name (Listopt) Blockopt

call Name (Listopt) Blockopt

List:

 Expression

 List , Expression

ExpressionStatement:

 Expression

Expression:

 OrExpression

OrExpression:

 AndExpression

 OrExpression or AndExpression

 Tea Template Language

 Page 40

AndExpression:

 EqualityExpression

 AndExpression and EqualityExpression

EqualityExpression:

RelationalExpression

EqualityExpression == RelationalExpression

EqualityExpression != RelationalExpression

RelationalExpression:

ConcatenateExpression

RelationalExpression < ConcatenateExpression

RelationalExpression > ConcatenateExpression

RelationalExpression <= ConcatenateExpression

RelationalExpression >= ConcatenateExpression

RelationalExpression isa Type

ConcatenateExpression:

 AdditiveExpression

 ConcatenateExpression & AdditiveExpression

AdditiveExpression:

 MultiplicativeExpression

 AdditiveExpression + MultiplicativeExpression

 AdditiveExpression – MultiplicativeExpression

MultiplicativeExpression:

 UnaryExpression

 MultiplicativeExpression * UnaryExpression

 MultiplicativeExpression / UnaryExpression

 MultiplicativeExpression % UnaryExpression

 Tea Template Language

 Page 41

UnaryExpression:

 not UnaryExpression

 - UnaryExpression

 LookupExpression

LookupExpression:

 Factor Lookupopt

Lookup:

 Lookupopt . Identifier

 Lookupopt [Expression]

Factor:

NewArrayExpression

 (Expression)

 Literal

 CallExpression

 Variable

NewArrayExpression:

 # (Listopt)

(Listopt)

CallExpression:

Name (Listopt) Blockopt

call Name (Listopt) Blockopt

 Tea Template Language

 Page 42

7.1 LL Grammar Reference
The grammar provided in the summary and everywhere else in the document is suitable for LR
parsers, but a grammar suitable for LL parsers is useful as well. The current implementation of
Tea uses a manually written LL(n) parser.

The notation used for the LL grammar follows an EBNF convention. Brackets (�[� and �]�)
denote optional derivations. Braces (�{� and �}�) denote derivations that may expand zero or
more times. Key terminals are shown with a fixed width font, and key terminals that are
punctuation characters are shown inside double quotes.

Template ::= TemplateDeclaration StatementList

StatementList ::= { Statement }

TemplateDeclaration ::= template Identifier �(� [FormalParameterList] �)�

[SubstitutionParameter]

FormalParameterList ::= FormalParameter { �,� FormalParameter }

FormalParameter ::= Type Variable

Type ::= Name { �[� �]�}

Name ::= Identifier { �.� Identifier }

Variable ::= Identifier

SubstitutionParameter ::= �{� �...� �}�

Statement ::= EmptyStatement

 | IfStatement

 | ForeachStatement

 | SubstitutionStatement

 | AssignmentStatement

 | CallStatement

 | ExpressionStatement

EmptyStatement ::= �;�

IfStatement ::= if �(� Expression �)� Block [ElseStatement]

ElseStatement ::= else Block

 | else IfStatement

Block ::= �{� StatementList �}�

ForeachStatement ::= foreach �(� Variable in Expression [.. Expression]

[reverse] �)� Block

 Tea Template Language

 Page 43

SubstitutionStatement ::= �...�

AssignmentStatement ::= Variable �=� Expression

CallStatement ::= [call] Name �(� [List] �)� [Block]

List ::= Expression { �,� Expression }

ExpressionStatement ::= Expression

Expression ::= OrExpression

OrExpression ::= AndExpression { or AndExpression }

AndExpression ::= EqualityExpression { and EqualityExpression }

EqualityExpression ::= RelationalExpression { �==� RelationalExpression }

 | RelationalExpression { �!=� RelationalExpression }

RelationalExpression ::= ConcatenateExpression { �<� ConcatenateExpression }

 | ConcatenateExpression { �>� ConcatenateExpression }

 | ConcatenateExpression { �<=� ConcatenateExpression }

 | ConcatenateExpression { �>=� ConcatenateExpression }

 | ConcatenateExpression { �isa� Type }

ConcatenateExpression ::= AdditiveExpression { �&� AdditiveExpression }

AdditiveExpression ::= MultiplicativeExpression { �+� MultiplicativeExpression }

 | MultiplicativeExpression { �-� MultiplicativeExpression }

MultiplicativeExpression ::= UnaryExpression { �*� UnaryExpression }

 | UnaryExpression { �/� UnaryExpression }

 | UnaryExpression { �%� UnaryExpression }

UnaryExpression ::= not UnaryExpression

 | �-� UnaryExpression

 | LookupExpression

LookupExpression ::= Factor { Lookup }

Lookup ::= �.� Identifier

 | �[� Expression �]�

Factor ::= NewArrayExpression

 | �(� Expression �)�

 | Literal

 | CallExpression

 | Variable

 Tea Template Language

 Page 44

NewArrayExpression ::= �#� �(� [List] �)�

 | �##� �(� [List] �)�

CallExpression ::= [call] Name �(� [List] �)� [Block]

	Preface
	Document Revision
	Contents
	Introduction
	Why Use Tea

	Java Integration
	Lexical Structure
	Keywords
	Literals
	Null Literal
	Boolean Literals
	String Literals
	Integer Literals
	Floating Point Literals

	Separators
	Operators
	Ellipsis Operator

	Templates
	Statements
	Semi-colons
	Break Statement
	If Statement
	Looping
	Substitution Statement
	Variable Assignment
	Expression Statement

	Expressions
	Accessing Properties
	Arithmetic
	String Concatenation
	Relational Tests
	“isa” Operator
	Logical Operators
	Array Creation

	Functions
	Calling Functions and Templates
	Function List
	setLocale
	getLocale
	getAvailableLocales
	nullFormat
	getNullFormat
	dateFormat
	getDateFormat
	getAvailableTimeZones
	getDateFormatTimeZone
	numberFormat
	getNumberFormat
	getNumberFormatInfinity
	getNumberFormatNaN
	currentDate
	startsWith
	endsWith
	find
	findFirst
	findLast
	substring
	toLowerCase
	toUpperCase
	trim
	trimLeading
	trimTrailing
	replace
	replaceFirst
	replaceLast
	shortOrdinal
	ordinal
	cardinal

	Type Conversion
	Method Binding
	Primitive Types
	Conversion to String
	Variable Promotion

	Grammar Summary
	LL Grammar Reference

